TABLES FOR DETERMINATION OF FLOW VARIABLE GRADIENTS BEHIND CURVED SHOCK WAVES Nathan Gerber Joan M. Bartos Department of the Army Project No. 5803-03-001 Ordnance Management Structure Code 5010.11.814 BALLISTIC RESEARCH LABORATORIES ABERDEEN PROVING GROUND, MARYLAND #### BALLISTIC RESEARCH LABORATORIES REPORT NO. 1086 JANUARY 1960 # TABLES FOR DETERMINATION OF FLOW VARIABLE GRADIENTS BEHIND CURVED SHOCK WAVES Nathan Gerber Joan M. Bartos PROPERTY OF U.S. ARMY STINEO BRANCH BEL, AFG, MD. 21005 Department of the Army Project No. 5B03-03-001 Ordnance Management Structure Code - 5010.11.814 (Ordnance Research and Development Project No. TB3-0108) ABERDEEN PROVING GROUND, MARYLAND #### BALLISTIC RESEARCH LABORATORIES REPORT NO. 1086 NGerber/JMBartos/ebh Aberdeen Proving Ground, Md. January 1960 # TABLES FOR DETERMINATION OF FLOW VARIABLE GRADIENTS BEHIND CURVED SHOCK WAVES #### ABSTRACT The shock wave relations and the equations of isoenergetic two-dimensional or axisymmetric flows can be combined to yield expressions for various useful quantities behind a shock wave if the curvature is known in addition to the position and slope. Tables are presented here of computations, for $\gamma=1.4$, of seven functions of Mach number and shock wave slope, from which the following are easily computed: 1) streamline curvature, 2) velocity gradient along streamline, 3) angle between streamline and density contour, and 4) angle between streamline and Mach number contour. In addition, the Mach number and angle of inclination of streamline are listed. A Mach number range from 1.1 to 10 is covered by these computations. A derivation of the shock gradient functions is presented; and several applications of the calculations are given, including a set of tables for determining the slope of the sonic line. #### SYMBOLS Mach number - angle between streamline and line of constant ξ ρ - density σ - arc length along shock wave # Subscripts 1 - free stream t - stagnation #### I. INTRODUCTION The problem of determining the gradients of the flow variables behind a shock wave in isoenergetic two-dimensional flow has been considered by several investigators 1,2,3. These gradients are very useful; for instance, the slope of the streamline at shock polar points in the hodograph plane can be obtained from them (the Busemann "hedgehog"). A particularly simple derivation was indicated by Sternberg, using natural coordinates. It is found that the flow variable gradients are proportional to the shock wave curvature. Tables of coefficients for streamline curvature have been computed by Thomas for a limited range of Mach number. The same gradients can be computed for axisymmetric flow. However, they are now linear combinations of the two shock curvatures, K_g in the meridianal plane and 1/r in the azimuthal plane. (The two-dimensional result in obtained simply by neglecting the 1/r term.) Because of this the general usefulness of these gradient functions is restricted in that one can no longer, as in two-dimensional flow, obtain certain quantities (e.g., slope of sonic line) without having to specify the values of r and K_g . Expressions for the slope of these contours (density, pressure, Mach number) have been given by Wood and Gooderum⁵. FIGURE 1.1 Aside from the results of Thomas cited above no calculations of the above-mentioned gradient quantities have to the authors' knowledge been published. This report supplies such a set of calculations ("shock gradient functions") which can be used to determine significant flow information from physical measurements. It is felt that these computations can also be helpful in obtaining a clearer general picture of flow behind a curved shock wave. These functions will find further application in the study of flow of a relaxing gas behind shock waves at large Mach numbers. The particular quantities to be obtained here are (using the notation of Fig. 1.1): 1) $\partial q/\partial s$, the velocity gradient along the streamline; 2) $\partial \Theta/\partial s$ (= K_{ψ}), the curvature of the streamline; 3) $\Theta + \zeta$, the slope angle of the isopycnal, or density contour; and 4) $\Theta + \xi$, the slope angle of the Mach number contour. It is assumed that the gas is ideal, and that the flow is non-viscous and isentropic along streamlines. The above flow quantities are obtainable from expressions having the following simplified forms: $$\frac{\partial \Theta}{\partial s} = F_{1}(\gamma, M_{1}, \beta) K_{s} + \epsilon F_{2}(\gamma, M_{1}, \beta) (1/r)$$ $$(1/q_{1})\partial q/\partial s = F_{3}(\gamma, M_{1}, \beta) K_{s} + \epsilon F_{4}(\gamma, M_{1}, \beta) (1/r)$$ $$\tan \zeta = \frac{F_{3}(\gamma, M_{1}, \beta) K_{s} + \epsilon F_{4}(\gamma, M_{1}, \beta) (1/r)}{F_{5}(\gamma, M_{1}, \beta) K_{s} + \epsilon F_{6}(\gamma, M_{1}, \beta) (1/r)}$$ (1.1) tan \$ = $$\frac{F_3(\gamma, M_1, \beta) K_s + \epsilon F_4(\gamma, M_1, \beta) (1/r)}{F_7(\gamma, M_1, \beta) K_s + \epsilon F_6(\gamma, M_1, \beta) (1/r)}$$ where ϵ is equal to zero for two-dimensional flow and one for axisymmetric flow. M_1 and q_1 are the Mach number and velocity, respectively, in the free stream; tan β is the slope of the shock wave; γ is the ratio of specific heats. The angle $\theta = \theta$ (M_1, β) is known from the shock wave relations (see, e.g., Ref. 6). The gradient functions F_1 , F_2 , ..., F_7 are derived in detail in Section II. These functions for the most part are long and complicated expressions in M_1 and β which do not lend themselves to analytical treatment or easy hand computation. It is, however, feasible to calculate them on a high speed computing machine. Thus the functions F_1 , F_2 , ..., F_7 , Θ , and M have been programmed for computation by the EDVAC in the Ballistic Research Laboratories, and they can be obtained quickly for any particular case of supersonic flow by specifying M_1 and γ in the computing machine input. The simple form of the expressions in Eqs. (1.1) suggests the practicability of a compilation of the coefficients of K_s and 1/r which could be employed as a labor saving means of determining the desired quantities. To this end, the present paper provides a series of tables of shock wave gradient functions versus β for $\gamma = 1.4$, with M_1 as parameter. The angle ζ is of special interest to the authors, particularly in calculating a flow field (velocity, streamlines, etc.) from given interferometric density data (see Ref. 5, 7, and 8). The information resulting from the measured β and K_s reduces the uncertainty in density near a shock wave which is inherent in the interferometric method. Sample hand computations have verified that the formulas used in this report yield the same values as formulas given in the references. #### II. DERIVATION OF GRADIENT FUNCTIONS The present derivation follows the one indicated in Ref. 4. In natural coordinates the equations of isoenergetic flow of an ideal non-viscous gas are $$(1/p) \frac{\partial p}{\partial s} + (1/q) \frac{\partial q}{\partial s} + \frac{\partial 9}{\partial n} + \epsilon (\sin \theta)/r = 0$$ (a) $$0 = a\delta/p\delta + pq \, \partial q/\delta = 0$$ $$\partial p/\partial n + \rho q^2 \partial \theta/\partial s = 0$$ (c) (2.1) $$h + q^2/2 = constant (d)$$ $$TdS = dh - dp/\rho$$ (e) where $\epsilon = 0$ for two-dimensional, = 1 for axisymmetric flow. The coordinates s and n are arc lengths along the streamline and along the orthogonal trajectory of the streamline, respectively; q is the speed of flow, and 0 is the angle between the streamline and the free stream direction (x axis); ρ is the density, and p the pressure. T is the temperature; M is the Mach number $(= q/a, \text{ where } a = (\partial p/\partial \rho)^{1/2} = \text{speed of sound})$. The two essential equations to be used here are $$(1 - M2) (1/q) \partial q/\partial s + \partial \theta/\partial n = -\epsilon (\sin \theta)/r$$ $$\partial q/\partial n - q \partial \theta/\partial s = - (T/q) dS/dn,$$ (a) (2.2) obtained from Eqs. (2.1) and the definition of the velocity of sound. (The foregoing equations are given in Ref. 9 and 10.) Entropy remains constant along streamlines. If σ is arc length along the shock wave, it is seen from the relation $$\partial/\partial \alpha = (\partial/\partial s) (\partial s/\partial \alpha) + (\partial/\partial n) (\partial n/\partial \alpha)$$ that at the shock wave (2.3) $$\frac{\partial}{\partial \sigma} = (\frac{\partial}{\partial \beta}) \ (\frac{\partial \beta}{\partial \beta}) = K_{\rm S} \frac{\partial}{\partial \beta} = (\frac{\partial}{\partial \rm S}) \cos (\beta - \theta) + (\frac{\partial}{\partial \rm n}) \sin (\beta - \theta)$$ where $\tan \beta$ and K_s are the slope and curvature, respectively, of the shock wave (Fig. 1.1). As the coordinates are defined, curvatures are positive where curves are concave upward and negative where concave downward. By means of Eq. (2.3), Eqs. (2.2) are replaced by two simultaneous linear algebraic equations for $\partial q/\partial s$ and $\partial \theta/\partial s$. The coefficients of these equations are now converted into the desired form; namely, that of Eqs. (1.1). For this purpose use is made of the following definitions and relations which can be found in many textbooks and reference books (the authors employed Ref. 6 mainly): $$m = M_1 \sin \beta \tag{2.4}$$ The subscript 1 always refers to free stream conditions. $$g = \rho_1/\rho = [(\gamma - 1) m^2 + 2] / [(\gamma + 1) m^2]$$ (2.5) $$l = p_1/p = (\gamma + 1) / [2\gamma m^2 - (\gamma - 1)]$$ (2.6) $$q = A q_1, \qquad (2.7)$$ where $$A = (\cos^2 \beta + g^2 \sin^2 \beta)^{1/2}$$ (2.8) $$\sin (\beta - \theta) = (g \sin \beta)/A$$, $\cos (\beta - \theta) = (\cos \beta)/A$ (2.9) $$\sin \theta = \left[(1-g) \sin \beta \cos \beta \right] /A$$ (2.10) $$T/T_{1} = g/\ell \tag{2.11}$$ $$M/M_1 = A(\ell/g)^{1/2}$$ (2.12) $$S
= \left(\frac{q_1}{T_1}\right) \left[\frac{q_1}{\gamma(\gamma - 1)M_1^2}\right] \left[\log_e\left(\frac{1}{\ell}\right) - \gamma \log_e\left(\frac{1}{g}\right)\right]^{(2.13)} + S_1$$ After differentiation for $\partial q/\partial \beta$, $\partial \theta/\partial \beta$, and $\partial S/\partial \beta$ (noting that $\partial S/\partial s=0$), one obtains expression for F_1 , F_2 , F_3 , and F_4 given by the following sequence of formulas: $$L(m) = g^2 - 1 - 4g/(\gamma m^2 + m^2)$$ (2.14) $$K(m) = (1 - m^2 g \ell)^{-1}$$ (2.15) $$J(m) = \frac{-\left[g/(\gamma+1)\right] \left[4m^2l - 2(\gamma+1) + 2(\gamma-1)/g\right]}{(\gamma-1) l m^2 L(m)}$$ (2.16) $$f_1 = g \left[L(1 - J) - K(1 - g) \right]$$ (2.17) $$f_2 = -K \left[(L - g + 1)/g + m^2 l L (1 - J) \right]$$ (2.18) $$f_z = g K(1 - g)$$ (2.19) $$f_{\perp} = K \left[(L - g + 1) + L(1 - J) \right]$$ (2.20) $$F_1 = \left[(\cos \beta)/A^{\overline{3}} \right] (f_1 \sin^2 \beta + f_2 \cos^2 \beta) \qquad (2.21)$$ $$\mathbf{F}_{2} = \left[(\cos \beta)/\mathbf{A}^{3} \right] \quad (\mathbf{f}_{3} \sin^{2} \beta \cos \beta) \qquad (2.22)$$ $$F_3 = \left[(\sin \beta)/A^2 \right] (f_4 \cos^2 \beta + g f_3 \sin^2 \beta) (2.23)$$ $$F_{\downarrow\downarrow} = - (g f_3 \sin^3 \beta \cos \beta)/A^2$$ $$\frac{\partial \theta}{\partial s} = F_1 K_s + \epsilon F_2 (1/r)$$ (2.24) $$(1/q_1) \partial q/\partial s = F_3 K_s + \epsilon F_4 (1/r)$$ The following relations, obtained from the flow equations, are used to find ζ and ξ : $$\mathbf{p} = \left(\frac{\mathbf{p}_{t}}{\mathbf{p}_{t}^{\gamma}}\right) \mathbf{p}^{\gamma} = \begin{bmatrix} \left(\mathbf{p}_{t}/\mathbf{p}_{t_{1}}\right) & \left(\mathbf{p}_{1}/\mathbf{p}_{t_{1}}\right)^{\gamma} & \mathbf{p}_{1} \\ \left(\mathbf{p}_{t}/\mathbf{p}_{t_{1}}\right)^{\gamma} & \frac{\mathbf{p}_{1}}{\mathbf{p}_{1}/\mathbf{p}_{t_{1}}} \end{bmatrix} \mathbf{p}^{\gamma} \quad (2.25)$$ where the subscript t denotes the stagnation value $(\partial p_t/\partial s = \partial \rho_t/\partial s = 0)$, and $$p_t/p_{t_1} = \rho_t/\rho_{t_1} = R = i^{1/(\gamma - 1)} g^{-\gamma/(\gamma - 1)}$$ (See Ref. 6) $$\rho_{1}/\rho_{t_{1}} = \left[1 + (\gamma - 1) M_{1}^{2}/2\right] -\frac{1}{(\gamma - 1)}$$ $$p_{1}/p_{t_{1}} = \left[1 + (\gamma - 1) M_{1}^{2}/2\right] -\frac{\gamma}{(\gamma - 1)}$$ By means of Eqs. (2.3) and (2.25), $\partial p/\partial s$ and $\partial p/\partial n$ can be expressed in terms of $\partial p/\partial s$, $\partial p/\partial n$, and other quantities already determined in this report. Substituting these expressions into Eqs.(2.1), one then derives expressions for $\partial p/\partial s$ and $\partial p/\partial n$; and putting these into the relation for the angle between the density contour and the streamline, namely, $$tan \zeta = -(\partial \rho/\partial s)/(\partial \rho/\partial n)$$ (2.26) one obtains A positive value of ζ indicates a counterclockwise rotation from the streamline to the density contour. The angle 5 between the Mach number contour and the streamline is determined from $$tan \xi = -(\partial M/\partial s)/(\partial M/\partial n) = -(\partial M^2/\partial s)/(\partial M^2/\partial n), \qquad (2.29)$$ where \$ has the same sign convention as \$. Since $$M^2 = (\rho q^2)/(\gamma p),$$ $\partial M^2/\partial n$ can be expressed in terms of the derivatives of ρ and q, which in turn are expressible in terms of previously determined quantities. Consequently one obtains $$\tan \xi = \frac{F_3 K_8 + \epsilon F_4 (1/r)}{F_7 K_8 + \epsilon F_6 (1/r)}, \text{ where}$$ $$F_7 = -\left[\frac{4 \cos \beta}{(\gamma + 1) g^2 m^2 \sin^2 \beta} \begin{cases} A^2 - \frac{2g (m^2 - 1)^2 \sin^2 \beta}{(\gamma + 1) m^2} \\ (\gamma + 1) m^2 \end{cases} \right]$$ $$+ \left\{\frac{(A^3 \gamma l m^2/g) + 2 A \sin^2 \beta}{\sin^2 \beta} F_1 + \left[\frac{A^2 m^2 l \cot \beta}{g^2 \sin^2 \beta} F_3\right] \cdot \left[2 + (\gamma - 1) \frac{A^2 m^2 l}{g \sin^2 \beta} \right]^{-1}$$ #### III. DISCUSSION OF COMPUTATIONS Tabulations of the functions F_1 , F_2 , ..., F_7 , 0, and M, calculated for $\gamma = 1.4$, are presented in Section 4 for values of M_1 ranging from 1.1 to 10.0. The functions are listed in order of decreasing β , from $\beta = 90^\circ$ to a value somewhat greater than $\beta = \sin^{-1}(1/M_1)$. The listed values of M_1 and β were chosen so as to permit the determination of the functions to a reasonable degree of accuracy for any M_1 and β by means of graphical interpolation. Figure 3.1 shows an example of results obtainable from these calculations. The right hand curve shows the variation in slope of the constant density lines along the shock wave of a supersonic sphere in nitrogen (shown at the left) determined from shock wave coordinate measurements and the appropriate shock gradient functions. For reference purposes, the left hand figure shows the sonic point and "Crocco point" (defined below), and indicates the location of typical values of rK_g . It must be noted that the accuracy of results like those in Figure 3.1 is restricted by the limited accuracy of β and K_g 7 = 1.4 M₁= 5.017 SPHERE, R_b= 9/32 IN. EXAMPLE OF VARIATON OF ANGLE OF CONSTANT DENSITY LINES ALONG A DETACHED SHOCK WAVE. Figure 3.1. 15 determined from experiment. (See Ref. 5 and 8 for discussion on determination of β and $K_{\mbox{\tiny a}}$.) A point often referred to in two-dimensional flow studies (e.g., Ref. 3) is the "Crocco point", where the streamline curvature is zero. Figure 3.2 shows the geometrical conditions which must exist at the Crocco point in plane and axisymmetric flows for $\gamma = 1.4$. It can be seen that in two-dimensional flow the Crocco point always lies below the sonic point on a shock wave of continuously decreasing slope. The two points approach coincidence with increasing Mach number. On the other hand, in axisymmetric flow the sonic point lies below the Crocco point for all values of M_1 and rK shown. By continuity there would be values of these two parameters for which the sonic point lies above the Crocco point. The slope of the sonic line is a quantity of considerable interest. It can be otained from the tables by evaluating the β and shock gradient functions corresponding to M = 1 (e.g., by graphical interpolation); it is found to be given by $$\tan (\Theta + \xi)_{son.} = \frac{B_1 (M_1) rK_s + 1}{B_2 (M_1) rK_s + B_3 (M_1)},$$ where B_1 , B_2 , and B_3 are given in Table 3.1 for $\gamma = 1.4$. It is seen that, formally, $rK_g = -\infty$ corresponds to two-dimensional flow. This particular case is plotted, in slightly different form, in Ref. 11. Figure 3.3 shows plots of the variation of $\S_{\text{son.}}$, the angle between the streamline and Mach number contour at the sonic point. For two-dimensional flow \S is negative, indicating that the sonic line has a smaller slope than the streamline. For axisymmetric flow the figure indicates that the sonic line can have a greater slope than the streamline. (The streamline curvature must be positive in this case. This can be seen from Eqs. (2.1b) and (2.1c) and the fact that $dq/d\sigma < 0$ and $dM/d\sigma > 0$ along a shock wave with continuously decreasing slope.) If $rK_g = -.2$ at the sonic point, the sonic line and streamline are nearly tangent to each other over a very wide range of Mach number. Figure 3.2. Conditions for zero curvature of streamline $(\partial \theta/\partial s=0)$ at shock wave (Crocco Point). (NOTE: FOR THE $rK_s=0$ CURVE, $\theta+\xi=\beta$) FIGURE 3.3. VARIATION OF ANGLE BETWEEN STREAMLINE AND SONIC LINE AT SHOCK WAVE. The values of M are also useful in finding the slopes of the characteristics at the shock wave in the supersonic portion of the flow field. For quick reference, Eqs. (1.1) are restated here. $$\frac{\partial \Theta}{\partial s} = F_1 K_s + F_2 (1/r)$$ $$(1/q_1)(\partial q/\partial s) = F_3 K_s + F_4 (1/r)$$ $$\tan \zeta = \frac{F_3(rK_s) + F_4}{F_5(rK_s) + F_6}$$ $$\tan \xi = \frac{F_3(rK_s) + F_4}{F_7(rK_s) + F_6}$$ 11 TABLE 3.1 Sonic Point Table ($\gamma = 1.4$) | <u> </u> | <u>B</u> 1 | <u>B</u> 2 | <u>B</u> 3 | β ^o | <u> </u> | |----------|------------|------------|------------|----------------|-------------------| | 1.10 | 10.03 | •793 | .301 | 73.26 | 1.40 | | 1.30 | 6.15 | .175 | • 464 | 65.11 | 6.31 | | 1.50 | 4.78 | - 0.548 | •524 | 62.26 | 11.71 | | 1.75 | 3.71 | - 1.40 | •546 | 61.31 | 17.77 | | 2.00 | 2.76 | - 2.29 | •541 | 61.50 | 22.70 | | 2.50 | 1.16 | - 3.91 | •517 | 62.66 | 29.65 | | 3.00 | - 0.31 | - 5.23 | .492 | 63.77 | 33.99 | | 3.50 | - 1.53 | - 6.27 | •474 | 64.62 | 3 6.82 | | 4.00 | - 2.56 | - 7.09 | .458 | 65.26 | 38.74 | | 4.50 | - 3.38 | - 7.70 | •451 | 65.73 | 40.06 | | 5.00 | - 4.04 | - 8,20 | • # # # | 66.08 | 41.03 | | 6.00 | - 5.04 | - 8.92 | •435 | 66.58 | 42.32 | | 7.00 | - 5.70 | - 9.38 | .428 | 66,88 | 43.16 | | 8.00 | - 6.19 | - 9.72 | .424 | 67.09 | 43.64 | | 9.00 | - 6.50 | - 9.92 | .420 | 67.22 | 44.03 | | 10.00 | - 6.76 | -10.09 | .419 | 67.35 | 44.27 | #### **ACKNOWLEDGEMENTS** The authors wish to express their appreciation to Dr. Raymond Sedney for his helpful advice and to Mr. Palmer Schlegel for programming and performing the EDVAC calculations. Mathan derber NATHAN GERBER JOAN M. BARTOS #### REFERENCES - 1. Schaefer, M., "The Relation Between Wall Curvature and Shock Front Curvature in Two-Dimensional Gas Flow" Tech Report No. F-TS-1202-IA, Air Materiel Command, U. S. Air Force, 1949. - 2. Thomas, T. Y., "Calculation of the Curvature of Attached Shock Waves" Jour. Math. and Phys., 27; 279 (1948). (Also see Jour. Math. and Phys., 26; 62 (1947).) - 3. Sears, W. R., Editor, "High Speed Aerodynamics and Jet Propulsion", Vol VI (p. 678). Princeton University Press, Princeton, New Jersey (1954). - 4. Sternberg, J., "Triple-Shock-Wave Intersections", The Physics of Fluids, 2; 179 (1959). - 5. Wood, G. P., and Gooderum, P. B., "Method of Determining Initial
Tangents of Contours of Flow Variables Behind a Curved, Axially Symmetric Shock Wave". NACA TN 2411, (July 1951). - 6. Ames Research Staff: "Equations, Tables, and Charts for Compressible Flow". NACA R-1135 (1953). - 7. Bennett, F. D., Carter, W. C., and Bergdolt, V. E., "Interferometric Analysis of Airflow About Projectiles in Free Flight". Jour. Appl. Phys. 23; 453, (1952). Aberdeen Proving Ground: BRL R-797, (March 1952). - 8. Sedney, R., Gerber, N., and Bartos, J. M., "Numerical Determination of Streamlines from Density Data". Aberdeen Proving Ground: BRL R-1073 (April 1959). - 9. Liepmann, H. W., and Roshko, A., "Elements of Gasdynamics". John Wiley and Sons, New York (1957). - 10. Lin, C. C., and Rubinov, S. I., "On the Flow Behind Curved Shocks". Jour. Math. and Phys., 27; 105 (1948). - 11. Hayes, W. D., and Probstein, R. F., "Hypersonic Flow Theory" (p.207). Academic Press, New York (1959). IV - TABLES OF SHOCK GRADIENT FUNCTIONS $\gamma = 1.4$ | β ^O | ө° | F ₁ | 10F ₂ | F ₃ | F ₄ | F ₅ | 10F ₆ | F 7 | М | |----------------|----|----------------|------------------|----------------|----------------|----------------|------------------|------------|---| | | | 0.0000 | | | | | | | | $M_1 = 1.10$ | | | _ | 2 |) | T | , | 0 | • | | |----|-------|---------|---------|---------|----------|---------|---------------|---------|-------| | 90 | 0.000 | 0.0000 | •00000 | 0.8574 | •00000 | 0.0000 | •00000 | 0.0000 | 0.912 | | 89 | 0.169 | -0.0543 | .00357 | 0.8502 | 01495 | 0.0463 | 00305 | 0.0469 | 0.912 | | 88 | 0.336 | -0.1074 | .01421 | 0.8283 | 02985 | 0.0916 | 01217 | 0.0928 | 0.913 | | 87 | 0.498 | -0.1581 | .03181 | 0.7917 | 04463 | 0.1351 | 02728 | 0.1369 | 0.915 | | 86 | 0.655 | -0.2054 | •05612 | 0.7399 | 05923 | 0.1759 | 04823 | 0.1781 | 0.917 | | 85 | 0.804 | -0.2479 | .08683 | 0.6724 | 07361 | 0.2128 | 07482 | 0.2156 | 0.920 | | 84 | 0.944 | -0.2844 | .12354 | 0.5885 | 08770 | 0.2450 | 10681 | 0.2482 | 0.923 | | 83 | 1.072 | -0.3136 | .16580 | 0.4871 | 10147 | 0.2712 | 14390 | 0.2747 | 0.927 | | 82 | 1.187 | -0.3341 | .21309 | 0.3668 | 11485 | 0.2902 | 18575 | 0.2940 | 0.932 | | 81 | 1.287 | -0.3444 | • 26484 | 0.2258 | 12782 | 0.3005 | 23200 | 0.3046 | 0.938 | | 80 | 1.371 | -0.3427 | • 32045 | 0.0616 | 14034 | 0.3006 | 28224 | 0.3048 | 0.944 | | 78 | 1.483 | -0.2941 | • 44071 | -0.3513 | 16390 | 0.2611 | 39298 | 0.2653 | 0.957 | | 76 | 1.514 | -0.1645 | •56876 | -0.9167 | 18532 | 0.1476 | 51442 | 0.1515 | 0.974 | | 74 | 1.454 | 0.0901 | • 69956 | -1.7246 | 20447 | -0.0838 | 64288 | -0.0805 | 0.992 | | 72 | 1.295 | 0.5642 | | -2.9781 | | | 77479 | | 1.013 | | 70 | 1.032 | 1.5152 | • 95145 | -5.2381 | 23582 | -1.4444 | 90674 | -1.4430 | 1.037 | | | | | | | | | | | | $\gamma = 1.4$ $M_1 = 1.30$ | β^{0} | e ^o | $\mathbf{F_{1}}$ | F ₂ | F ₃ | $\mathbf{F_{4}}$ | F ₅ | F 6 | ^F 7 | M | |-------------|----------------|------------------|----------------|----------------|------------------|----------------|------------|----------------|-------| | 90 | 0.000 | 0.0000 | •00000 | | •00000 | 0.0000 | | 0.0000. | 0.786 | | 89 | 0.515 | | •00062 | | 01552 | | 00041 | 0.0556 | 0.786 | | 88 | 1.027 | | •00248 | | 03095 | | 00164 | 0.1104 | 0.787 | | 87 | 1.532 | -0.2335 | - | | 04621 | | 00366 | 0.1637 | 0.789 | | 86 | 2.028 | -0.3054 | .00973 | 0.8202 | 06122 | | 00647 | 0.2149 | 0.792 | | 85 | 2.511 | -0.3724 | .01501 | 0.7814 | 07590 | 0.2423 | 01001 | 0.2632 | 0.795 | | 84 | 2.979 | -0.4334 | .02127 | 0.7344 | 09018 | 0.2832 | 01425 | 0.3079 | 0.799 | | 83 | 3.427 | -0.4873 | •02842 | 0.6794 | 10399 | 0.3201 | 01914 | 0.3484 | 0.804 | | 82 | 3.855 | -0.5335 | •03634 | 0.6168 | 11727 | 0.3523 | 02462 | 0.3841 | 0.810 | | 81 | 4.260 | -0.5711 | •04491 | 0.5466 | 12998 | 0.3795 | 03063 | 0.4146 | 0.816 | | 80 | 4.638 | -0.5996 | .05400 | 0.4693 | 14208 | 0.4011 | 03711 | 0.4391 | 0.823 | | 78 | 5.309 | -0.6269 | .07327 | 0.2938 | 16429 | 0.4257 | 05120 | 0.4689 | 0.839 | | 76 | 5.856 | -0.6125 | .09317 | 0.0916 | 18376 | 0.4228 | 06636 | 0.4699 | 0.857 | | 74 | 6.267 | -0.5544 | •11282 | -0.1370 | 20043 | 0.3891 | 08207 | 0.4386 | 0.878 | | 72 | 6.535 | -0.4507 | .13148 | -0.3935 | 21436 | 0.3210 | 09785 | 0.3715 | 0.902 | | 70 | 6.655 | -0.2991 | .14860 | -0.6813 | 22569 | 0.2138 | 11329 | 0.2637 | 0.928 | | 65 | 6.299 | 0.3298 | .18228 | -1.5998 | 24390 | -0.2803 | 14829 | -0.2384 | 1.002 | | 60 | 5.013 | 1.5662 | .20143 | -3.1378 | 25056 | -1.3724 | 17553 | -1.3461 | 1.089 | | 55 | 2.836 | 5.0595 | .20685 | -7.3220 | 24903 | -4.7334 | 19342 | -4.7248 | 1.191 | $\gamma = 1.$ | $M_1 =$ | 1.50 | |---------|------| |---------|------| | $\beta^{\mathbf{o}}$ | e° | F ₁ | F ₂ | F ₃ | \mathbf{F}_{4} | F ₅ | F 6 | ^F 7 | M | |----------------------|-------|---------------------|----------------|----------------|------------------|----------------|------------|----------------|-------| | 90 | 00.00 | 0.0000 | -00000 | 0.9105 | •00000 | 0.0000 | •00000 | 0.0000 | 0.701 | | 89 | 00.86 | | .00096 | - | 01587 | | 00052 | 0.0655 | 0.702 | | 88 | 01.72 | -0.2159 | .00382 | | 03162 | | 00205 | 0.1301 | 0.703 | | 87 | 02.56 | -0.3189 | .00850 | | 04713 | 0.1638 | 00459 | 0.1929 | 0.705 | | 86 | 03.39 | -0.4162 | .01491 | | 06229 | 0.2146 | 00808 | 0.2531 | 0.708 | | 85 | 04.20 | -0.5061 | .02290 | 0.8052 | 07699 | 0.2621 | 01248 | 0.3099 | 0.712 | | 84 | 04.99 | -0.5872 | .03229 | 0.7604 | 09114 | 0.3056 | 01770 | 0.3626 | 0.717 | | 83 | 05.75 | - 0•6583 | .04289 | 0.7088 | 10466 | 0.3447 | 02368 | 0.4105 | 0.723 | | 82 | 06.48 | - 0•7184 | .05448 | 0.6507 | 11748 | 0.3787 | 03033 | 0.4530 | 0.729 | | 81 | 07.17 | -0.7669 | •06685 | 0.5868 | 12955 | 0.4073 | 03756 | 0•4898 | 0.737 | | 80 | 07.82 | -0.8032 | .07977 | 0.5176 | 14082 | | 04527 | 0.5203 | 0.745 | | 78 | 09.00 | -0.8389 | .10644 | 0.3654 | 16089 | | 06176 | 0.5615 | 0.764 | | 76 | 10.00 | - 0.8262 | .13293 | 0.1982 | 17762 | 0.4580 | 07907 | 0.5751 | 0.785 | | 74 | 10.81 | -0.7678 | .15799 | 0.0196 | 19111 | | 09656 | 0.5601 | 0.810 | | 72 | 11.42 | -0.6680 | .18070 | - | 20156 | | 11367 | 0.5166 | 0.837 | | 70 | 11.84 | - 0•5309 | .20047 | -0.3636 | 20929 | | 12997 | 0.4442 | 0.866 | | 65 | 12.06 | -0.0472 | | | 21883 | | 16523 | 0.1332 | 0.949 | | 60 | 11.16 | | | | 21844 | | | | 1.045 | | 55 | 09.26 | | | | 21215 | | | | 1.152 | | 50 | 06.44 | 3.5288 | .24037 | -3.9945 | 20270 | -3.1431 | 21319 | -3.0970 | 1.271 | $M_1 = 1.75$ $\gamma = 1.4$ | β ^O | e° | F _l | F ₂ | F ₃ | $\mathbf{F}_{f l_{f i}}$ | F ₅ | ^F 6 | F ₇ | М | |----------------|-------|----------------|----------------|----------------|--------------------------|----------------|-----------------|----------------|-------| | 90 | 00.00 | 0.0000 | .00000 | 0.9269 | .00000 | 0.0000 | •00000 | 0.0000 | 0.628 | | 89 | 01.28 | | .00146 | 0.9221 | 01615 | 0.0607 | 00064 | 0.0783 | 0.629 | | 88 | 02.55 | -0.2961 | .00580 | 0.9078 | 03212 | 0.1204 | - •00255 | 0.1554 | 0.630 | | 87 | 03.80 | -0.4359 | | 0.8843 | 04776 | 0.1777 | 00569 | 0.2301 | 0.633 | | 86 | 05.03 | -0.5660 | | 0.8520 | 06289 | 0.2318 | 00999 | 0.3013 | 0.637 | | 85 | 06.22 | -0.6841 | .03430 | 0.8115 | 07740 | 0.2816 | 01536 | 0.3681 | 0.642 | | 84 | 07.38 | -0.7880 | .04801 | 0.7636 | 09114 | 0.3264 | 02168 | 0.4296 | 0.648 | | 83 | 08.50 | -0.8761 | .06323 | 0.7089 | 10403 | 0.3655 | 02884 | 0.4850 | 0.655 | | 82 | 09.56 | | .07957 | 0.6483 | 11600 | 0.3984 | 03671 | 0.5339 | 0.663 | | 81 | 10.57 | -1.0016 | .09663 | 0.5827 | 12699 | 0.4247 | 04514 | 0.5757 | 0.672 | | 80 | 11.52 | -1.0385 | .11406 | 0.5130 | 13697 | 0 • 4442 | 05400 | 0.6103 | 0.682 | | 78 | 13.23 | -1.0623 | .14869 | 0.3642 | 15390 | 0.4626 | 07252 | 0.6570 | 0•705 | | 76 | 14.68 | -1.0255 | .18122 | 0.2077 | 16693 | 0.4539 | 09134 | 0.6741 | 0.731 | | 74 | 15.87 | -0.9375 | .21012 | 0.0482 | 17639 | 0.4200 | 10968 | 0.6629 | 0.760 | | 72 | 16.80 | -0.8087 | .23455 | -0.1110 | 18273 | 0.3629 | 12700 | 0.6253 | 0.792 | | 70 | 17.47 | -0.6484 | .25418 | -0.2681 | 18642 | 0.2851 | - •14290 | 0.5632 | 0.826 | | 65 | 18.12 | -0.1583 | .28343 | -0.6476 | 18713 | 0.0123 | 17524 | 0.3118 | 0.922 | | 60 | 17.48 | 0.4126 | .28988 | -1.0210 | 18036 | -0.3636 | 19666 | -0.0709 | 1.029 | | 55 | 15.75 | | | | 17018 | | | | 1.147 | | 50 | 13.08 | | | | 15898 | | | | 1.276 | | 45 | 09.59 | | | | 14797 | | | | 1.415 | | 40 | 05.30 | 7.0134 | | | 13764 | | | | 1.569 | | | ^ - | | • | | • • • | | • • • | , - , - | 1 1 1 | | β ^O | $\theta_{\mathbf{o}}$ | $\mathtt{F}_\mathtt{l}$ | F ₂ | F ₃ | \mathbf{F}_{14} | F ₅ | F 6 | F ₇ | М | |----------------|-----------------------|-------------------------|----------------|----------------|-------------------|----------------|------------|----------------|-------| | 90 | 00.00 | 0.0000 | •00000 | 0.9375 | •00000 | 0.0000 | •00000 | 0.0000 | 0.577 | | 8 9 | 01.66 | -0.1930 | .00202 | | 01632 | 0.0652 | 00076 | 0.0906 | 0.578 | | 88 | 03.32 | -0.3807 | .00801 | | 03241 | | 00302 | 0.1797 | 0.580 | | 87 | 04.94 | -0.5579 | .01771 | | 04806 | | 00671 | 0.2656 | 0.583 | | 86 | 06.53 | -0.7204 | .03073 | | 06304 | | 01172 | 0.3471 | 0.588 | | 8 5 | 08.08 | -0.8643 | .04657 | | 07721 | | 01794 | 0.4228 | 0.594 | | 84 | 09.57 | -0.9869 | .06465 | 0.7546 | 09040 | 0.3415 | 02518 | 0.4919 | 0.601 | | 83 | 10.99 | -1.0866 | .08436 | 0.6950 | 10253 | 0.3789 | 03329 | 0.5534 | 0.610 | | 82 | 12.34 | -1.1626 | .10509 | 0.6300 | 11351 | 0.4089 | 04208 | 0.6070 | 0.619 | | 81 | 13.61 | -1.2149 | .12627 | 0.5606 | 12332 | 0.4310 | 05137 | 0.6523 | 0.630 | | 80 | 14.81 | -1.2443 | .14736 | 0.4880 | 13195 | 0.4453 | 06099 | 0.6891 | 0.642 | | 78 | 16.94 | -1.2406 | .18759 | 0.3373 | 14577 | 0.4511 | 08060 | 0.7380 | 0.669 | | 76 | 18.73 | - 1•1664 | | 0.1847 | 15538 | 0.4285 | 09986 | 0.7555 | 0.699 | | 74 | 20.18 | -1.0387 | .25268 | | 16136 | 0.3811 | 11799 | 0.7448 | 0.733 | | 72 | 21.30 | -0.8735 | | | 16435 |
0.3130 | 13451 | 0.7092 | 0.769 | | 70 | 22.12 | - 0•6842 | | | 16498 | | 14915 | 0.6521 | 0.808 | | 65 | 22.97 | | | | 15966 | | | 0.4314 | 0.917 | | 60 | 22.41 | | | | 14919 | | | 0.1147 | 1.037 | | 55 | 20.73 | 0.9094 | | | 13714 | | | - | 1.167 | | 50 | 18.13 | 1.5083 | | | 12534 | | | | 1.307 | | 45 | 14.74 | 2.2937 | | | 11460 | | | - | 1.456 | | 40 | 10.62 | 3.6349 | | | 10524 | | | | 1.617 | | 35 | 05.75 | 7.3335 | .18491 | -4.6213 | 09724 | -6.9018 | 17361 | -6.8444 | 1.795 | | | | M ₁ = | 2.50 | | $\gamma = 1.4$ | | | | | | |----------------|----------------|---------------------|----------------|----------------|----------------|-------------------|----------------|----------------|-------|--| | β ^o | e ^o | Fl | F ₂ | F ₃ | F_{4} | F ₅ | F ₆ | F ₇ | М | | | 90 | 00.00 | | .00000 | | - | 0.0000 | •00000 | 0.0000 | 0.513 | | | 89 | 02.33 | - 0.2793 | .00320 | | 01652 | | 00096 | 0.1124 | 0.514 | | | 88 | 04.64 | -0.5479 | | | 03269 | | 00380 | 0.2224 | 0.517 | | | 87 | 06.90 | - 0 • 7958 | | | 04818 | | -•00841 | 0.3276 | 0.521 | | | 86 | 09.09 | -1.0149 | - | | 06271 | | 01458 | 0.4260 | 0.527 | | | 85 | 11.21 | -1.1994 | | | 07604 | | 02210 | 0.5160 | 0.535 | | | 84 | 13.22 | -1 •3456 | .09666 | | 08803 | | 03069 | 0.5964 | 0.545 | | | 83 | 15.12 | - 1•4524 | - | | 09858 | 0.3914 | 04008 | 0.6666 | 0.556 | | | 82 | 16.91 | - 1.5209 | | 0.5827 | 10765 | 0.4131 | 04999 | 0.7262 | 0.568 | | | 81 | 18.57 | -1 •5534 | .17807 | 0.5062 | 11527 | 0.4249 | 06019 | 0.7753 | 0.582 | | | 80 | 20.10 | - 1•5536 | .20345 | 0.4286 | 12150 | 0.4273 | 07044 | 0.8143 | 0.597 | | | 78 | 22.78 | -1.4741 | •24811 | 0.2746 | 13019 | 0.4064 | 09042 | 0.8644 | 0.631 | | | 76 | 24.96 | -1 •3170 | .28300 | 0.1280 | 13462 | 0.3565 | 10887 | 0.8821 | 0.669 | | | 74 | 26.68 | -1.1134 | .30792 | -0.0073 | 13578 | 0.2844 | 12520 | 0.8735 | 0.711 | | | 72 | 27.97 | - 0.8867 | •32382 | -0.1295 | 13453 | 0.1959 | 13917 | 0.8440 | 0.756 | | | 70 | 28.89 | -0.6533 | .33216 | -0.2387 | 13161 | 0.0961 | 15079 | 0.7979 | 0.804 | | | 65 | 29.80 | -0.0961 | .32971 | -0.4619 | 12031 | -0.1816 | 17053 | 0.6281 | 0.934 | | | 60 | 29.18 | 0.3904 | .30845 | -0.6328 | 10714 | -0.4768 | 17958 | 0.3966 | 1.077 | | | 55 | 27.44 | 0.8175 | .27971 | -0.7748 | 09443 | -0.7818 | 18097 | 0.1034 | 1.231 | | | 50 | 24.85 | 1.2221 | .24923 | -0.9102 | 08307 | -1.1076 | 17697 | -0.2682 | 1.395 | | | 45 | 21.57 | 1.6594 | | | 07334 | | | | 1.569 | | | 40 | 17.68 | 2.2266 | | | 06525 | | | | 1.754 | | | 35 | 13.17 | 3.1621 | | | 05875 | | | | 1.952 | | | 30 | 07.99 | 5.4086 | | | 05370 | | | | 2.169 | | | ** *** | 1.7 A 1.5 | | | | | The second second | . . | | | | | β ^O | e ^o | F _l | F ₂ | F ₃ | $\mathbf{F}_{l_{\!+}}$ | F ₅ | F 6 | ^F 7 | M | |--|--|--|--|--|--|---|---|--|---| | 99887654321086777666554433325 | 00.00
02.85
05.67
08.42
11.07
13.60
15.99
18.22
20.29
22.19
23.93
26.90
29.25
31.06
32.38
33.28
34.07
33.32
31.49
25.62
21.85
17.58
12.77
07.28 | -1.7304
-1.7787
-1.7819
-1.7472
-1.5923
-1.3659
-1.1072
-0.8421
-0.5856
-0.0209 | .00431
.01687
.03669
.06229
.09189
.12368
.15598
.18737
.21677
.24343
.28699
.31716
.33532
.34371
.34465
.32680
.29544
.26084
.22734
.19659
.14465
.12300 | 0.9484
0.9237
0.8840
0.8312
0.7678
0.6963
0.6193
0.5393
0.4583
0.3779
0.2240
0.0840
-0.0395
-0.1467
-0.2388
-0.4158
-0.5393
-0.6319
-0.7901
-0.8897
-1.0436
-1.3429 | .0000001662032770480406207074610855009469102211081311259117771190211751114181097106308070990605807099060580345803142 | 0.1530
0.2215
0.2812
0.3302
0.3675
0.3926
0.4058
0.4058
0.4058
0.3560
0.2850
0.1949
0.0924
-0.0175
-0.3039
-0.5874
-0.8604
-1.1276
-1.4046
-1.7277
-2.1835
-3.0261 | 0011200441009700167102511034530446105502065470757409502111971262613789147071610116532163161566814737136291241911152 | 0.1298
0.2563
0.3763
0.4872
0.5872
0.6751
0.7504
0.8133
0.8643
0.9043
0.9554
0.9754
0.9754
0.9754
0.9758
0.6285
0.4140
0.1382
-0.2227
-0.7090
-1.4041
-2.5422 | 0.475
0.476
0.480
0.485
0.493
0.502
0.514
0.527
0.558
0.576
0.616
0.660
0.708
0.760
0.814
0.961
1.123
1.296
1.482
1.681
1.894
2.122
2.367
2.638 | | | | $M_1 = 1$ | | | *************************************** | | y = 1.4 | | | | β ^O | $\boldsymbol{\Theta}^{\boldsymbol{O}}$ | $\mathbf{F}_{\mathbf{l}}$ | F ₂ | F ₃ | F_{14} | F ₅ | F ₆ | F ₇ | М | | 988765432108642050505050
988765432108642050505050 | 00.00
03.25
06.46
09.58
12.57
15.40
18.06
20.51
22.77
24.82
26.67
29.80
32.22
34.04
35.36.19
36.85
35.97
34.05
31.39
28.16
24.46
20.35
15.78
10.68
04.77 | -0.4242 -0.8240 -1.1782 -1.4715 -1.6952 -1.8477 -1.9326 -1.9572 -1.9313 -1.8647 -1.6480 -1.3709 -1.0764 -0.7892 -0.5220 0.0376 0.4587 0.7836 1.0524 1.3001 1.5642 1.9006 2.4312 3.5499 | .02056
.04441
.07471
.10902
.14498
.18049
.21393
.24420
.27061
.31108
.33603
.34818
.35068
.34632
.31858
.28154
.24401
.20925
.17821
.15099
.12736
.10694
.08920 | 0.9513
0.9231
0.8782
0.8190
0.7489
0.6711
0.5888
0.5047
0.4210
0.3395
0.1875
0.0538
-0.0606
-0.1571
-0.2378
-0.3865
-0.4834
-0.5502
-0.6475
-0.7778
-0.9159
-1.2335 | .00000
01667
03279
04784
06142
07328
09141
09774
10244
10567
10855
10789
10493
10057
09545
08170
06870
05737
04780
03986
03338
02820
02420
02130
01942 | 0.0824
0.1606
0.2310
0.2905
0.3371
0.3700
0.3890
0.3948
0.3713
0.3109
0.2247
0.1223
0.0103
-0.1062
-0.3997
-0.6797
-0.9399
-1.821
-1.4148
-1.6572
-1.9537
-2.4207
-3.4561 | 15270
15412
14987
14192
13166
12005
10784
09554
08343 | -0.7481
-1.5503
-2.9817 | 0.451
0.452
0.456
0.462
0.471
0.482
0.495
0.5127
0.565
0.565
0.609
0.711
0.767
0.827
0.987
1.163
1.353
1.558
1.779
2.018
2.277
2.558
2.864
3.212 | | β ^o | θ° | $\mathtt{F}_{\mathtt{l}}$ | F ₂ | F ₃ | \mathbf{F}_{14} | F ₅ | ^F 6 | ^F 7 | М | |---|---|---|--|---
--|--|--|--|---| | 9098876584321086777650505050505050505050505050505050505 | 00.00
03.56
07.07
10.46
13.71
16.76
19.60
22.22
24.60
26.74
28.66
31.87
34.32
36.12
37.39
38.74
37.76
35.77
33.07
29.85
26.20
22.18
17.78
12.94
07.44 | 0.0000
-0.4790
-0.9270
-1.3176
-1.6327
-1.8634
-2.0098
-2.0787
-2.0811
-2.0295
-1.9368
-1.6726
-1.3598
-1.6721
-0.7423
-0.4704
0.0806
0.4801
0.7782
1.0159
1.2254
1.4366
1.6883
2.0544
2.7353
4.6432 | .00607
.02362
.05073
.08471
.12254
.16137
.19885
.23326
.26353
.28912
.32620
.34660
.35404
.35224
.31014
.26979
.23076
.19547
.16444
.13755
.11445
.09475 | 0.9529
0.9219
0.8727
0.8086
0.7334
0.6509
0.5648
0.4780
0.3929
0.3111
0.1615
0.0332
-0.0743
-0.1631
-0.23663
-0.4469
-0.4984
-0.5623
-0.5623
-0.5623
-0.5645 | 0167:0327:0327:04763:06084:07215:08145:09805:09424:09996:09616:09996:09616:09128:07211:05960:04891:03998:02665:02188:01545 | 1 0.0856
7 0.1664
8 0.2378
9 0.3410
9 0.3699
9 0.3837
9 0.3834
9 0.3705
9 0.3467
0 0.2736
0 0.1766
0 0.0655 | 00133
00523
01140
01943
02880
03903
04965
06026
07057
08036
09786
11227
12363
13226
13852
14616
14574
14018
14018
12047
10850
09615
08396
07230 | 0.1538
0.3026
0.4420
0.5687
0.6805
0.7766
0.8571
0.9231
0.9759
1.0173
1.0723
1.1001
1.1099
1.1080
1.0981
1.0509
0.9764
0.8682
0.7126
0.4904
0.1759
-0.2698
-0.9183 | 0.435
0.436
0.441
0.447
0.457
0.469
0.483
0.558
0.559
0.655
0.677
0.659
0.677
0.839
1.096
1.398
1.669
2.412
2.412
2.4728
3.466 | | • | | $M_1 = $ | 4.50 | | THE RESERVE OF THE PARTY |) | / = 1.4 | | | | β | $\Theta^{\mathbf{O}}$ | F | ⁷ 2 | F 3 | F_{4} | F ₅ | F ₆ | F ₇ | M | | 55
50
45
40
35
30
25 | 00.00
03.80
07.54
11.15
14.58
17.80
20.78
23.50
25.97
28.17
30.14
33.39
35.84
37.63
39.63
40.07
39.01
36.94
31.02
27.41
23.45
19.17
14.51
09.31 | -0.5236 -1.0103 -1.4290 -1.7593 -1.9929 -2.1317 -2.1856 -2.1684 -2.0957 -1.9822 -1.6821 -1.3439 -1.0110 -0.7039 -0.4301 0.1122 0.4953 0.7746 0.9914 1.1760 1.3541 1.55555 1.8313 2.3049 | .13311
.17396
.21265
.24744
.27734
.30197
.33598
.35269
.35166
.34108
.30281
.26045
.22059
.18510
.15419
.12757
.10485
.08561 | 0.9206
0.8000
0.8000
0.7208
0.6349
0.5461
0.4576
0.3716
0.2900
0.1428
0.0187
-0.0834
-0.1667
-0.2341
-0.2341
-0.4634
-0.4634
-0.4634
-0.4634
-0.5068
-0.5068
-0.5068
-0.5068
-0.5068
-0.5068
-0.5068
-0.5068
-0.5068
-0.5068
-0.5068
-0.5068
-0.5068
-0.5068
-0.5068
-0.5068
-0.5068
-0.5068
-0.5068
-0.5068
-0.5068
-0.5068
-0.5068
-0.5068
-0.5068 | 016730327403274047440603507123079980866809150094680964609679096460967908474079230656005352043330279701444 | 0.0881
0.1707
0.2428
0.3010
0.3432
0.3688
0.3782
0.3731
0.3550
0.3262 | 01196
02029
02994
04036
05106
06164
07180
08134
09812
11164
12206
12978
13521
14112
13948
13363
12363
10013
08766
07549 | 7 2040 | 0.424
0.425
0.437
0.437
0.447
0.460
0.475
0.492
0.533
0.556
0.6661
0.720
0.783
0.849
1.027
1.222
1.669
1.926
2.210
2.526
2.877
3.709 | | β ^o | $\theta_{\mathbf{O}}$ | F _l | F ₂ | F ₃ | $\mathtt{F}_{\mathtt{1}_{\!\mathtt{1}}}$ | F ₅ | ^F 6 | F ₇ | М | |--|--|---|--|---|--|--|---|--|--| | 999
887
888
888
888
888
888
888
888
888 | 00.00
03.99
07.90
11.68
15.26
18.60
21.68
24.48
27.01
29.26
31.25
34.53
36.98
38.74
40.68
41.04
39.91
37.83
35.09
31.87
28.28
24.37 | 0.0000
-0.5598
-1.0774
-1.5179
-1.8593
-2.0935
-2.2246
-2.2650
-2.2316
-2.1417
-2.0118
-1.6844
-1.3280
-0.9847
-0.6731
-0.3989
0.1358
0.5064
0.7720
0.9741
1.1415
1.2973
1.4659 | .05995
.09901
.14143
.18369
.22314
.25801
.28742
.31113
.34252
.35631
.35749
.35029
.33789
.29675
.25310
.21278
.17723
.14645
.12007 | 0.9194
0.8641
0.7929
0.7107
0.6222
0.5315
0.4418
0.3555
0.2741
0.1290
0.0084
-0.0898
-0.1689
-0.2323
-0.3410
-0.4033
-0.4386
-0.4579
-0.4684
-0.4756 | 01674032720472805995070470788008503089370920709342093030899308533080107444061000492703947031400248101950 | 0.1740
0.2466
0.3041
0.3444
0.3672
0.3732
0.3641
0.3421
0.3092
0.2194
0.1086 | 001460057101238020940307904133052070625907261081930981311096120681277313255137241347512774117891063409394 | 0.0000
0.1682
0.3303
0.4809
0.6162
0.7341
0.8341
0.9171
0.9845
1.0385
1.0812
1.1404
1.1758
1.1966
1.2087
1.2155
1.2187
1.2044
1.1647
1.0865
0.9524
0.7396
0.4161 |
0.415
0.417
0.422
0.429
0.440
0.453
0.469
0.488
0.530
0.554
0.6663
0.724
0.789
0.858
1.041
1.243
1.465
1.709
1.979
2.282
2.622 | | 30
25
20 | 20.17
15.64
10.67 | 1.6857
2.0418
2.8144 | .07870
.06294 | -0.5066
-0.5578 | 01198
00952 | -2.0474
-2.3046
-2.9304 | 06917
05782 | -0.0671
-0.8026 | 3.006
3.441
3.933 | | | | M ₁ = 0 | | | | | $\gamma = 1.4$ | -200344 | | | β ^o | $\Theta_{\mathbf{o}}$ | F | F ₂ | F ₃ | $\mathrm{F}_{1_{\!4}}$ | F ₅ | F ₆ | $^{\mathrm{F}}_{7}$ | М | | 99
88
87
86
85
84
83
82 | 00.00
04.25
08.42
12.43
16.21
19.73
22.94
25.85
28.45 | 0.0000
-0.6135
-1.1762
-1.6474
-2.0027
-2.2352
-2.3527
-2.3718
-2.3136 | .00808
.03115
.06598
.10821
.15329
.19735
.23756 | 0.9174
0.8581
0.7825
0.6960
0.6040
0.5107 | .00000
01675
03267
04703
05934
06937
07709
08266
08634 | 0.1786
0.2517
0.3079
0.3454
0.3639
0.3648 | .00000
00154
00601
01298
02185
03194
04263
05337
06377 | 0.0000
0.1773
0.3476
0.5049
0.6453
0.7667
0.8689
0.9532
1.0215 | 0.404
0.406
0.411
0.419
0.431
0.445
0.462
0.482
0.503 | | 81
80
78
76
74
72
70
65
60
55 | 30.76
32.78
36.08
38.51
40.23
41.39
42.08
42.32
41.11
38.97 | -2.1986
-2.0453
-1.6807
-1.3007
-0.9449
-0.6288
-0.3550
0.1676
0.5211
0.7685 | .30069
.32285
.35029
.35994
.35743
.34723
.33249
.28782
.24270
.20194 | 0.3331
0.2523
0.1106
-0.0051
-0.0977
-0.1712
-0.2293
-0.3264
-0.3793
-0.4064 | 08842
03919
08789
08418
07924
07377
06820
05509
04388
03462 | 0.3224
0.2840
0.1844
0.0656
-0.0624
-0.1937
-0.3246
-0.6392
-0.9274
-1.1864 | 07355
08254
09788
10975
11851
12468
12870
13183
12826
12051 | 1.0763
1.1201
1.1828
1.2239
1.2526
1.2744
1.2926
1.3293
1.3547
1.3609 | 0.527
0.552
0.607
0.667
0.731
0.799
0.870
1.063
1.274
1.508 | | 50
45
40
35
30
25
20 | 36.20
32.98
29.42
25.58
21.49
17.13
12.44 | 1.0973
1.2257
1.3552
1.5110 | .13589
.10985
.08778
.06927
.05395 | -0.4199
-0.4171
-0.4134
-0.4141
-0.4289 | 02092
01600
01210
00908
00682 | -1.4160
-1.6160
-1.7865
-1.9300
-2.0563
-2.2001
-2.4907 | 09825
08561
07289
06066
04936 | 0.5097
-0.0791 | 1.768
2.059
2.390
2.770
3.210
3.724
4.324 | | β ^o | e° | $\mathtt{F}_\mathtt{l}$ | F ₂ | F ₃ | $\mathrm{F}_{l_{\!+}}$ | F ₅ | F ₆ | F ₇ | М | |---|--|---|--|---|---|---|--|--|--| | 90
88
88
88
88
88
88
88
88
88
8 | 00.00
04.43
08.76
12.92
16.83
20.45
23.75
26.73
29.37
31.71
33.75
37.05
39.46
41.16
42.28
43.11
41.84
39.67
36.88
33.65
30.11 | 0.0000
-0.6499
-1.2429
-1.7339
-2.0971
-2.3269
-2.4338
-2.4377
-2.3624
-2.2306
-2.0623
-1.6744
-1.2804
-0.9178
-0.5997
-0.3269
0.1873
0.5299
0.7663
0.9380
1.0711
1.1837 | .00000
.00863
.03319
.07005
.11432
.16106
.20613
.24667
.28105
.30869
.32973
.35446
.36144
.35663
.34462
.32851
.28185
.23598
.19503
.15960
.12927
.10346 | 0.9159
0.8539
0.7754
0.6862
0.5920
0.4973
0.4055
0.3189
0.2387
0.0993
-0.0131
-0.1022
-0.1722
-0.2271
-0.3173
-0.3647
-0.3871
-0.3941 | 04685
05892
06862
07595
08111
08437
08650
08467
08063
07551
06999
06445
05158
05158
04072
03181
02456
01871 | 0.1816
0.2549
0.3102
0.3455
0.3611
0.3586
0.3402
0.3088
0.2669
0.1610
0.0373
-0.0945
-0.2288
-0.3621
-0.6811 | 12417
11600
10534
09323 | 0.0000
0.1832
0.3589
0.5206
0.6642
0.7878
0.8913
0.9763
1.0453
1.1007
1.1453
1.2107
1.2559
1.2902
1.3188
1.3446
1.4041
1.4565
1.4788
1.5065
1.4788
1.3926 | 0.399
0.404
0.413
0.425
0.440
0.458
0.458
0.525
0.551
0.669
0.736
0.879
1.537
1.808
2.114
2.465 | | 35
30
25
20 | 26.31
22.28
18.04
13.52 | 1.2914
1.4128
1.5811
1.8815 | .08163
.06335
.04827
.03612 | -0.3724
-0.3629
-0.3608 | 01403
01034
00750
00538
00388 | -1.9869
-2.0992
-2.1977
-2.3494 | 06764
05536
04408
03416 | 1.2218
0.9265
0.4419
-0.3542 | 2.875
3.360
3.941
4.641 | | _ | | $M_{1} = $ | 8.00 | | | • | y = 1.4 | | | | β ^O | e° | F _l | F ₂ | F ₃ | $\mathtt{F}_{\underline{l}_{4}}$ | F ₅ | ^F 6 | F ₇ | М | | 998876543210864205050505050
9098876543220 | 00.00
04.55
09.00
13.26
17.26
20.95
24.30
27.32
29.99
32.34
34.39
37.70
40.10
41.77
42.87
43.62
42.32
40.12
37.32
34.09
30.56
22.80
18.63
14.22 | -2.0717
-1.6685
-1.2655
-0.8989
-0.5798
-0.3080
0.2003
0.5357
0.7648
0.9292
1.0542
1.1569
1.2511
1.3516
1.4831 | .16636
.21206
.25274
.28682
.31385
.33407
.35693
.36210
.35579
.34259
.32562
.27774
.23143
.19041
.15506
.12487
.09922
.07755
.05942 | 0.9148
0.8510
0.7704
0.6794
0.5837
0.4881
0.3959
0.3094
0.2296
0.0919
-0.1050
-0.1727
-0.2255
-0.3113
-0.3552
-0.3747
-0.3789
-0.3789
-0.3467
-0.3467
-0.313
-0.3198 | .00000
01677
03260
04672
05863
06810
07516
08004
08303
08448
08469
08253
07308
06754
06202
04934
0303
02299
01733
02299
01733
00927
00655
00453
00311 | 0.3454
0.3590
0.3540
0.3540
0.3331
0.2992
0.2549
0.1449
0.0179
-0.1165
-0.2527
-0.3876
-0.7099
-1.0047
-1.5080
-1.5080
-1.7157
-1.8925
-2.0364
-2.1464
-2.275 | 02281033140439305463054630648507433082920973110814115931212012443126051214511300102160899207705064180518704057 | 0.0000
0.1873
0.3666
0.5313
0.6771
0.8020
0.9064
0.9919
1.0613
1.172
1.1624
1.2298
1.2781
1.3163
1.3497
1.3810
1.4565
1.5279
1.5882
1.6272
1.6322
1.6322
1.6322
1.6322
1.6322
1.5867
1.5867
1.5867
1.529 | 0.393
0.395
0.400
0.409
0.422
0.437
0.455
0.455
0.455
0.550
0.672
0.550
0.672
0.885
1.836
2.551
2.551
2.551
4.107
4.896 | | β ^o | e° | Fl | F ₂ | F ₃ | $\mathtt{F}_{\underbrace{1}_{+}}$ | F ₅ | F ₆ | F ₇ | М | |--
---|--|--|--|--|--|--|--
---| | 99
88
88
88
88
88
88
88
88
88 | 00.63
09.16
13.49
17.56
21.30
24.69
27.73
30.42
32.79
34.81
54
42.28
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43.99
43. | -1 • 2546
-0 • 8853
-0 • 5657
-0 • 2947
0 • 2093 | .03566
.07491
.12155
.17013
.21624
.25696
.29080
.31737
.336949
.36240
.35505
.34106
.327481
.22822
.18717
.15189
.12181
.09627
.07469
.04186 | 0.9139
0.8489
0.7669
0.6746
0.5779
0.4816
0.3892
0.3027
0.2233
0.0868
-0.0218
-0.1730
-0.2243
-0.3685
-0.3661
-0.3685
-0.3661
-0.3473
-0.3473
-0.3295
-0.32932 | .00000
01677
03258
04663
05842
06772
07460
07928
083342
08342
08364
07667
07140
06585
06036
06781
06781
06583
06036
06036
06036
06036
06036
06036
06036
06036
06036
06036
06036
06036
06036
06036
06036
06036
06036
06036
06036
06036
000856
000856
000856
000856
000856 | 0.1851
0.2585
0.3124
0.3452
0.3573
0.3576
0.3279
0.2922
0.2463
0.1334
0.0041
-0.1321
-0.2697
-0.4058
-0.7304
-1.0275
-1.2962
-1.5365
-1.7479
-1.9289
-2.0770
-2.1893
-2.2654 | 001650064301381023080230803347044280549606512074500829809709107641151512018123211244211955120920876307469087630494403814 | 0.000
0.1902
0.3721
0.5389
0.6861
0.8120
0.9170
1.0029
1.0726
1.1289
1.1745
1.2435
1.2940
1.3351
1.3720
1.4072
1.4942
1.5794
1.6561
1.7150
1.7445
1.7445
1.7445
1.7445
1.7445
1.7450
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
1.7445
| 0.397
0.397
0.419
0.435
0.455
0.455
0.455
0.455
0.674
0.674
0.888
0.674
0.888
0.674
0.888
0.655
0.674
0.888
0.655
0.674
0.655
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667
0.667 | | | ······································ | M ₁ = 1 | | | | | v = 1.4 | | | | β ^o | e° | Fl | F ₂ | F ₃ | $\mathtt{F}_{)_{\!$ | F ₅ | F ₆ | F ₇ | М | | 90
90
90
90
90
90
90
90
90
90 | 00.00
04.70
09.28
13.67
17.78
21.55
24.98
28.03
30.74
33.11
35.17
38.47
40.86
42.50
43.57
44.28
40.68
42.89
40.68
37.84
31.09
27.34
23.41
19.32
15.05 | -0.7076 -1.3479 -1.8686 -2.2419 -2.4650 -2.5531 -2.5318 -2.4295 -2.2720 -2.0810 -1.6596 -1.2464 -0.8753 -0.5555 -0.2850 0.2158 0.5424 0.7630 0.9188 1.0345 1.1259 1.2047 1.2821 1.3738 | .00951
.03643
.07642
.12377
.17288
.21927
.269366
.319935
.35935
.35935
.35935
.35935
.35936
.32190
.272589
.18488
.321966
.22589
.184960
.1194166
.07266
.0395 | 0.9560
0.9133
0.8473
0.7642
0.6710
0.5736
0.4769
0.3843
0.2979
0.2188
0.0243
-0.1081
-0.1731
-0.2234
-0.3041
-0.3600
-0.3611
-0.3524
-0.33174
-0.3957
-0.2747 | 0167703256032560465605826067450787308140082540825007996075510702006465059180467303639027990212001576 | 0.1861
0.2595
0.3131
0.3451
0.3560
0.3481
0.2871
0.2871
0.2899
0.1249
-0.060
-0.1435
-0.2821
-0.4454
-1.3151
-1.5580
-1.7724
-2.1099
-2.2262
-2.3029 | 001670065001394023270337104453055200653107462083010969110726114571194312231123231161810942098370859807300060060477003639 | 0.000
0.1923
0.3761
0.5444
0.6928
0.8194
0.9248
1.0110
1.0808
1.1374
1.1834
1.2535
1.3057
1.3490
1.3885
1.4266
1.5222
1.6176
1.7066
1.7804
1.8381
1.7693
1.8381
1.7693
1.8381
1.7693
1.8381
1.7693
1.8381
1.7693
1.8381
1.7693
1.8381
1.7693
1.8381
1.8381
1.7693
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8381
1.8 | 0.388
0.390
0.395
0.405
0.417
0.452
0.474
0.452
0.474
0.5550
0.674
0.893
1.092
1.871
2.581
2.581
3.620
4.337
5.267 | | No. of
Copies | Organization | No. of Copies | Organization | |------------------|---|---------------|---| | 1 | Director National Aeronautics and Space Administration Langley Research Center Langley Field, Virginia Attn: Mr. G. P. Wood | 1 | Los Alamos Scientific Laboratory P. 0. Box 1663 Los Alamos, New Mexico | | 1 | Director | _ | Arthur D. Little, Inc.
30 Memorial Drive
Cambridge 42, Massachusetts | | | National Aeronautics and
Space Administration
1520 H Street, N. W.
Washington 25, D. C. | 1 | Applied Physics Laboratory
8621 Georgia Avenue
Silver Spring, Maryland | | | Attn: Division of Research
Information | 1 | AVCO Research Laboratory
Wilmington, Massachusetts | | 1 | Army Research Office Arlington Hall Station Arlington, Virginia Attn: Lt. Col. J. T. Brown | ı | Attn: Dr. Mac C. Adams Boeing Airplane Company Seattle 14, Washington | | 1 | Commanding General | 1 | Attn: F. E. Ehlers CONVAIR | | | Army Ballistic Missile Agency
Redstone Arsenal, Alabama
Attn: Technical Library | 1 | Division of General Dynamics
Corporation
Ordnance Aerophysics Lab. | | 1 | Commander Army Rocket and Guided Missile Agency | 1 | Daingerfield, Texas CONVAIR | | | Redstone Arsenal, Alabama
Attn: Technical Library
ORDXR-OTL | - | Division of General Dynamics
Corporation
San Diego Division
San Diego, California | | 1 | Commanding General
Army Ordnance Missile Command | _ | Attn: R. D. Linnell | | _ | Redstone Arsenal Alabama Attn: Major D. H. Steininger | 1 | Cornell Aeronautical Lab., Inc.
4455 Gemesee Street
Buffalo 5, New York
Attn: Dr. F. K. Moore | | 1 | Commanding General White Sands Missile Range New Mexico Attn: ORDBS-TS-TIB | 1 | Cornell University Graduate School of Aeronautical Engineering Ithaca, New York Attn: Prof. W. R. Sears | | No. of
Copies | Organization | No. of
Copies | Organization | |------------------|--
------------------|---| | 1 | Chief of Ordnance
Department of the Army
Washington 25, D. C.
Attn: ORDTB - Bal Sec | 2 | Commander Naval Ordnance Laboratory White Oak Silver Spring, Maryland Attn: Library | | 1 | Commanding Officer Diamond Ordnance Fuze Lab. Washington 25, D. C. Attn: ORDTL - 012 | 1 | Commander Naval Ordnance Test Station China Lake, California Attn: Technical Library | | 1 | Office of Technical Services Department of Commerce Washington 25, D. C. | 1 | Superintendent
Naval Postgraduate School
Monterey, California | | 10 | Director Armed Services Technical Information Agency Arlington Hall Station Arlington 12, Virginia Attn: TIPCR | 1 | Commander Air University Maxwell Air Force Base Alabama Attn: Air University Library | | 10 | British Joint Services Mission 1800 K Street, N. W. Washington 6, D. C. Attn: Reports Officer | 4 | Commander Air Research and Development Command Andrews Air Force Base Washington 25, D. C. | | jŤ | Canadian Army Staff 2450 Massachusetts Avenue Washington 8, D. C. | 1 | Director National Aeronautics and Space Administration Lewis Flight Propulsion Laboratory | | 3 | Chief, Bureau of Naval Weapons
Department of the Navy
Washington 25, D. C. | | Cleveland Airport
Cleveland, Ohio | | 2 | Commander U. S. Naval Weapons Laboratory Dahlgren, Virginia | 1 | Director National Aeronautics and Space Administration Ames Research Center Moffett Field, California | | No. of Copies | Organization | No. of
Copies | Organization | |---------------|---|------------------|---| | 2 | California Institute of
Technology
Guggenheim Aeronautical Lab.
1500 Normandy Drive
Pasadena 4, California | 1 | Jet Propulsion Laboratory
California Institute of
Technology
Pasadena 3, California | | | Attn: Prof. L. Lees
Prof. H. W. Liepmann | 1 | Lockheed Aircraft Corporation
Research and Development
Laboratory | | 1 . | Duke University Box CM, Duke Station Durham, North Carolina Attn: Dr. R. J. Duffin | | Missile Systems Division
Palo Alto, California
Attn: Dr. D. Bershader | | 2 | Douglas Aircraft Company
3000 Ocean Park Blvd.
Santa Monica, California | 1 | Glenn L. Martin Company
Baltimore, Maryland
Attn: S. C. Traugott | | | Attn: Mr. H. Luskin
Mr. R. J. Hakkinen | 1 | Space Technology Laboratories,
Inc.
P. 0. Box 95002 | | 1 | Firestone Tire and Rubber
Company | | Los Angeles 45, California | | | Defense Research Division
Akron 17, Ohio | 1 | Ramo-Wooldridge Thompson
5760 Arbor Vitae Street
Los Angeles 45, California | | 2 | General Electric Company Aeronautics and Ordnance Systems Division 1 River Road Schenectady 5, New York Attn: Dr. H. T. Nagamatsu Dr. D. R. White | 1 . | University of Maryland Institute for Fluid Dynamics and Applied Mathematics College Park, Maryland Attn: Mr. S. I. Pai University of Southern | | 1 | General Electric Company MSVD 3198 Chestnut Street Philadelphia, Pennsylvania | | California Engineering
Center
Los Angeles 7, California | | 1 | Attn: Dr. F. G. Gravalos North American Aviation, Inc. 12214 Lakewood Blvd. Downey, California Attn: Aerophysics Laboratory | 2 | Princeton University Aeronautical Department Forrestal Research Center Princeton, New Jersey Attn: Prof. W. Hayes Prof. J. Bogdonoff | | No. of
Copies | Organization | No. of
Copies | Organization | |------------------|--|------------------|---| | 1 | Brown University Graduate Div. of Applied Mathematics Providence 12, Rhode Island Attn: Dr. R. Probstein | 1 | Dr. L. H. Thomas
Watson Scientific Computing
Laboratory
612 West 116th Street
New York 27, New York | | 2 | Rensselaer Polytechnic Institute
Troy, New York
Attn: Prof. T. Y. Li
Prof. G. H. Handelman | 2 | Professor G. F. Carrier H. W. Emmons Division of Applied Science Harvard University Cambridge 38, Massachusetts | | 1 | United Aircraft Corporation
Research Department
East Hartford 8, Connecticut | 1 | Professor F. H. Clauser, Jr. Johns Hopkins University Department of Aeronautics | | 1 | University of Illinois
Aeronautical Institute
Urbana, Illinois | 1 | Baltimore 18, Maryland Dr. A. E. Puckett Hughes Aircraft Company | | 1 | Standford University Palo Alto, California Attn: Dr. M. D. Van Dyke | | Florence Avenue at Teal St. Culver City, California |